
Artificial Neural Networks for Beginners

Carlos Gershenson
C.Gershenson@sussex.ac.uk

1. Introduction

The scope of this teaching package is to make a brief induction to Artificial Neural
Networks (ANNs) for people who have no previous knowledge of them. We first make a brief
introduction to models of networks, for then describing in general terms ANNs. As an
application, we explain the backpropagation algorithm, since it is widely used and many other
algorithms are derived from it.

The user should know algebra and the handling of functions and vectors. Differential
calculus is recommendable, but not necessary. The contents of this package should be
understood by people with high school education. It would be useful for people who are just
curious about what are ANNs, or for people who want to become familiar with them, so when
they study them more fully, they will already have clear notions of ANNs. Also, people who
only want to apply the backpropagation algorithm without a detailed and formal explanation
of it will find this material useful. This work should not be seen as “Nets for dummies”, but of
course it is not a treatise. Much of the formality is skipped for the sake of simplicity. Detailed
explanations and demonstrations can be found in the referred readings. The included exercises
complement the understanding of the theory. The on-line resources are highly recommended
for extending this brief induction.

2. Networks

One efficient way of solving complex problems is following the lemma “divide and
conquer”. A complex system may be decomposed into simpler elements, in order to be able
to understand it. Also simple elements may be gathered to produce a complex system (Bar
Yam, 1997). Networks are one approach for achieving this. There are a large number of
different types of networks, but they all are characterized by the following components: a set
of nodes, and connections between nodes.

The nodes can be seen as computational units. They receive inputs, and process them
to obtain an output. This processing might be very simple (such as summing the inputs), or
quite complex (a node might contain another network...)

The connections determine the information flow between nodes. They can be
unidirectional, when the information flows only in one sense, and bidirectional, when the
information flows in either sense.

The interactions of nodes though the connections lead to a global behaviour of the
network, which cannot be observed in the elements of the network. This global behaviour is
said to be emergent. This means that the abilities of the network supercede the ones of its
elements, making networks a very powerful tool.

mailto:C.Gershenson@sussex.ac.uk
mailto:carlos@jlagunez.iquimica.unam.mx

Networks are used to model a wide range of phenomena in physics, computer science,
biochemistry, ethology, mathematics, sociology, economics, telecommunications, and many
other areas. This is because many systems can be seen as a network: proteins, computers,
communities, etc. Which other systems could you see as a network? Why?

3. Artificial neural networks

One type of network sees the nodes as ‘artificial neurons’. These are called artificial
neural networks (ANNs). An artificial neuron is a computational model inspired in the
natural neurons. Natural neurons receive signals through synapses located on the dendrites
or membrane of the neuron. When the signals received are strong enough (surpass a certain
threshold), the neuron is activated and emits a signal though the axon. This signal might be
sent to another synapse, and might activate other neurons.

Figure 1. Natural neurons (artist’s conception).

The complexity of real neurons is highly abstracted when modelling artificial
neurons. These basically consist of inputs (like synapses), which are multiplied by weights
(strength of the respective signals), and then computed by a mathematical function which
determines the activation of the neuron. Another function (which may be the identity)
computes the output of the artificial neuron (sometimes in dependance of a certain
threshold). ANNs combine artificial neurons in order to process information.

Figure 2. An artificial neuron

The higher a weight of an artificial neuron is, the stronger the input which is
multiplied by it will be. Weights can also be negative, so we can say that the signal is
inhibited by the negative weight. Depending on the weights, the computation of the neuron
will be different. By adjusting the weights of an artificial neuron we can obtain the output
we want for specific inputs. But when we have an ANN of hundreds or thousands of
neurons, it would be quite complicated to find by hand all the necessary weights. But we can
find algorithms which can adjust the weights of the ANN in order to obtain the desired
output from the network. This process of adjusting the weights is called learning or training.

The number of types of ANNs and their uses is very high. Since the first neural
model by McCulloch and Pitts (1943) there have been developed hundreds of different
models considered as ANNs. The differences in them might be the functions, the accepted
values, the topology, the learning algorithms, etc. Also there are many hybrid models where
each neuron has more properties than the ones we are reviewing here. Because of matters
of space, we will present only an ANN which learns using the backpropagation algorithm
(Rumelhart and McClelland, 1986) for learning the appropriate weights, since it is one of
the most common models used in ANNs, and many others are based on it.

Since the function of ANNs is to process information, they are used mainly in fields
related with it. There are a wide variety of ANNs that are used to model real neural
networks, and study behaviour and control in animals and machines, but also there are
ANNs which are used for engineering purposes, such as pattern recognition, forecasting,
and data compression.

3.1. Exercise

This exercise is to become familiar with artificial neural network concepts. Build a
network consisting of four artificial neurons. Two neurons receive inputs to the network,
and the other two give outputs from the network.

There are weights assigned with each arrow, which represent information flow.
These weights are multiplied by the values which go through each arrow, to give more or

less strength to the signal which they transmit. The neurons of this network just sum their
inputs. Since the input neurons have only one input, their output will be the input they
received multiplied by a weight. What happens if this weight is negative? What happens if
this weight is zero?

The neurons on the output layer receive the outputs of both input neurons,
multiplied by their respective weights, and sum them. They give an output which is
multiplied by another weight.

Now, set all the weights to be equal to one. This means that the information will flow
unaffected. Compute the outputs of the network for the following inputs: (1,1), (1,0), (0,1),
(0,0), (-1,1), (-1,-1).

Good. Now, choose weights among 0.5, 0, and -0.5, and set them randomly along the
network. Compute the outputs for the same inputs as above. Change some weights and see
how the behaviour of the networks changes. Which weights are more critical (if you change
those weights, the outputs will change more dramatically)?

Now, suppose we want a network like the one we are working with, such that the
outputs should be the inputs in inverse order (e.g. (0.3,0.7)->(0.7,0.3)).

That was an easy one! Another easy network would be one where the outputs should
be the double of the inputs.

Now, let’s set thresholds to the neurons. This is, if the previous output of the neuron
(weighted sum of the inputs) is greater than the threshold of the neuron, the output of the
neuron will be one, and zero otherwise. Set thresholds to a couple of the already developed
networks, and see how this affects their behaviour.

Now, suppose we have a network which will receive for inputs only zeroes and/or
ones. Adjust the weights and thresholds of the neurons so that the output of the first output
neuron will be the conjunction (AND) of the network inputs (one when both inputs are
one, zero otherwise), and the output of the second output neuron will be the disjunction
(OR) of the network inputs (zero in both inputs are zeroes, one otherwise). You can see
that there is more than one network which will give the requested result.

Now, perhaps it is not so complicated to adjust the weights of such a small network,
but also the capabilities of this are quite limited. If we need a network of hundreds of
neurons, how would you adjust the weights to obtain the desired output? There are
methods for finding them, and now we will expose the most common one.

4. The Backpropagation Algorithm

The backpropagation algorithm (Rumelhart and McClelland, 1986) is used in
layered feed-forward ANNs. This means that the artificial neurons are organized in layers,
and send their signals “forward”, and then the errors are propagated backwards. The
network receives inputs by neurons in the input layer, and the output of the network is given
by the neurons on an output layer. There may be one or more intermediate hidden layers.
The backpropagation algorithm uses supervised learning, which means that we provide the
algorithm with examples of the inputs and outputs we want the network to compute, and
then the error (difference between actual and expected results) is calculated. The idea of
the backpropagation algorithm is to reduce this error, until the ANN learns the training
data. The training begins with random weights, and the goal is to adjust them so that the
error will be minimal.

The activation function of the artificial neurons in ANNs implementing the

ibackpropagation algorithm is a weighted sum (the sum of the inputs x multiplied by their

jirespective weights w):

(1)

We can see that the activation depends only on the inputs and the weights.
If the output function would be the identity (output=activation), then the neuron

would be called linear. But these have severe limitations. The most common output
function is the sigmoidal function:

(2)

The sigmoidal function is very close to one for large positive numbers, 0.5 at zero,
and very close to zero for large negative numbers. This allows a smooth transition between
the low and high output of the neuron (close to zero or close to one). We can see that the
output depends only in the activation, which in turn depends on the values of the inputs and
their respective weights.

Now, the goal of the training process is to obtain a desired output when certain
inputs are given. Since the error is the difference between the actual and the desired
output, the error depends on the weights, and we need to adjust the weights in order to
minimize the error. We can define the error function for the output of each neuron:

(3)

We take the square of the difference between the output and the desired target
because it will be always positive, and because it will be greater if the difference is big, and
lesser if the difference is small. The error of the network will simply be the sum of the errors
of all the neurons in the output layer:

(4)

The backpropagation algorithm now calculates how the error depends on the
output, inputs, and weights. After we find this, we can adjust the weights using the method
of gradient descendent:

(5)

This formula can be interpreted in the following way: the adjustment of each weight

ji()w) will be the negative of a constant eta (0) multiplied by the dependance of the

iprevious weight on the error of the network, which is the derivative of E in respect to w .
The size of the adjustment will depend on 0, and on the contribution of the weight to the
error of the function. This is, if the weight contributes a lot to the error, the adjustment will
be greater than if it contributes in a smaller amount. (5) is used until we find appropriate
weights (the error is minimal). If you do not know derivatives, don’t worry, you can see
them now as functions that we will replace right away with algebraic expressions. If you
understand derivatives, derive the expressions yourself and compare your results with the
ones presented here. If you are searching for a mathematical proof of the backpropagation
algorithm, you are advised to check it in the suggested reading, since this is out of the scope
of this material.

jiSo, we “only” need to find the derivative of E in respect to w . This is the goal of the
backpropagation algorithm, since we need to achieve this backwards. First, we need to
calculate how much the error depends on the output, which is the derivative of E in respect

jto O (from (3)).

(6)

And then, how much the output depends on the activation, which in turn depends
on the weights (from (1) and (2)):

(7)

And we can see that (from (6) and (7)):

(8)

And so, the adjustment to each weight will be (from (5) and (8)):

(9)

We can use (9) as it is for training an ANN with two layers. Now, for training the
network with one more layer we need to make some considerations. If we want to adjust

ikthe weights (let’s call them v) of a previous layer, we need first to calculate how the error
depends not on the weight, but in the input from the previous layer. This is easy, we would

i jijust need to change x with w in (7), (8), and (9). But we also need to see how the error of

ikthe network depends on the adjustment of v . So:

(10)

Where:

(11)

k ikAnd, assuming that there are inputs u into the neuron with v (from (7)):

(12)

If we want to add yet another layer, we can do the same, calculating how the error
depends on the inputs and weights of the first layer. We should just be careful with the
indexes, since each layer can have a different number of neurons, and we should not
confuse them.

For practical reasons, ANNs implementing the backpropagation algorithm do not
have too many layers, since the time for training the networks grows exponentially. Also,
there are refinements to the backpropagation algorithm which allow a faster learning.

4.1. Exercise

If you know how to program, implement the backpropagation algorithm, that at least
will train the following network. If you can do a general implementation of the
backpropagation algorithm, go ahead (for any number of neurons per layer, training sets,
and even layers).

If you do not know how to program, but know how to use a mathematical assistant
(such as Matlab or Mathematica), find weights which will suit the following network after
defining functions which will ease your task.

If you do not have any computing experience, find the weights by hand.
The network for this exercise has three neurons in the input layer, two neurons in

a hidden layer, and three neurons in the output layer. Usually networks are trained with
large training sets, but for this exercise, we will only use one training example. When the
inputs are (1, 0.25, -0.5), the outputs should be (1,-1,0). Remember you start with random
weights.

5. Further reading

The following great books go much deeper into ANNs:
• Rojas, R. (1996). Neural Networks: A Systematic Introduction. Springer, Berlin.
• Rumelhart, D. and J. McClelland (1986). Parallel Distributed Processing. MIT Press,

Cambridge, Mass.
For further information on networks in general, and related themes, these books are

quite useful and illustrative:
• Bar-Yam, Y. (1997). Dynamics of Complex Systems. Addison-Wesley.
• Kauffman, S. (1993) Origins of Order, Oxford University Press.

6. Online resources

There is a vast amount of resources on the Internet related to Neural Networks. A
great tutorial, with excellent illustrative examples using Java applets (source code
available), was developed at the EPFL (http://diwww.epfl.ch/mantra/tutorial/english/).
Other two good tutorials are at the Universidad Politécnica de Madrid
(http://www.gc.ssr.upm.es/inves/neural/ann1/anntutorial.html) and at the Imperial College
of S c i e n c e , T e c h n o l og y a n d M e d i c i n e U n i v e r s i t y o f Lond on
(http://www.doc.ic.ac.uk/~nd/surprise_96/journal/vol4/cs11/report.html). The author also
has a small amount of resources related to programming neural networks in Java
(http://jlagunez.iquimica.unam.mx/~carlos/programacione.html).

7. Bibliography

Bar-Yam, Y. (1997). Dynamics of Complex Systems. Addison-Wesley.
Kauffman, S. (1993) Origins of Order, Oxford University Press.
McCulloch, W. and W. Pitts (1943). A Logical Calculus of the Ideas Immanent in Nervous Activity.

Bulletin of Mathematical Biophysics, Vol. 5, pp. 115-133.
Rojas, R. (1996). Neural Networks: A Systematic Introduction. Springer, Berlin.
Rumelhart, D. and J. McClelland (1986). Parallel Distributed Processing. MIT Press, Cambridge,

Mass.
Young, D. Formal Computational Skills Course Notes. Http://www.cogs.susx.ac.uk/users/davidy/fcs

http://diwww.epfl.ch/mantra/tutorial/english/
http://www.gc.ssr.upm.es/inves/neural/ann1/anntutorial.html
http://www.doc.ic.ac.uk/~nd/surprise_96/journal/vol4/cs11/report.html
http://jlagunez.iquimica.unam.mx/~carlos/programacione.html
Http://www.cogs.susx.ac.uk/users/davidy/fcs

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Bar-Yam, Y. \(1997\)

